
Molecular and Atomic Dipole Moments in Heteronuclear and Homonuclear Diatomics.
Density Functional Approach

Peter Itskowitz† and Max L. Berkowitz* ,‡

Department of Chemistry CB 3290 and Department of Physics and Astronomy CB 3255,
UniVersity of North Carolina, Chapel Hill, North Carolina 27599

ReceiVed: September 15, 1997; In Final Form: March 27, 1998

In our previous work ( Itskowitz, P.; Berkowitz, M. L.J. Phys. Chem. A1997, 101, 5687), we showed how
in the framework of density functional theory the energy of a molecule can be expressed as a functional of
the perturbations on atomic densities. In this work we develop an approximation for these perturbations that
assigns two charge distributions to each atom. With the help of this approximation, we obtain the values of
the net charges for a number of heteronuclear diatomic molecules with the average error of only 5.4% compared
to the experimental data. Our approach also allows us to treat homonuclear diatomics in the same way as
heteronuclear. In the limit of a point dipole approximation to the charge distribution on an atom in homonuclear
diatomics we obtain results which are in a reasonable agreement with the results fromab initio calculations.

I. Introduction

Molecular dynamics and Monte Carlo computer simulations
are tools that are used routinely to study the behavior of
molecules in clusters, simple fluids, complex fluids, and
molecular assemblies.1 Today, one can perform molecular
dynamics simulations by solving the quantum problem for every
step of the simulation, although it is computationally very
expensive to do this.2 In fact, it is practically impossible to do
this for large systems such as an assembly of biomolecules. In
this case one has to resort to the traditional classical molecular
dynamics method, where motion of the particles is described
by Newton’s equations. To move the particles under the
influence of the forces one needs to describe these forces (i.e.,
to have a force field present in the simulations). A very
important part of the force field is the electrostatic part, and a
lot of work is devoted to its interpretation, representation, and
development.3 In its simplest form, the electrostatic force field
is represented as the Coulomb interaction of some net charge
monopoles, usually located at the positions of the atomic nuclei.
The net charges are configuration independent and as the result
in this model the electrostatic energy is pairwise additive. This
kind of modeling can be very successful. For example, an
SPC/E model of water, where the electrostatic energy is
described in a pairwise fashion, is able to reproduce many bulk
properties of water.4 Moreover, the model can reproduce some
of the interface properties of water, such as the temperature
dependence of the surface tension.5 But, as was shown recently,
simulations done on a water cluster with a simple anion such
as Cl- produced different results when popular pairwise additive
potentials were used compared to simulations with nonadditive
potentials.6-8 Comparison with experiments indicated that
nonadditive potentials produce a description which is closer to
the correct description of the phenomena.7,8

The need to use nonadditive electrostatic potentials in
simulations including simulations with biomolecules was often
expressed in the literature.9 One can introduce the many-body

effects into electrostatic part of the potential by introducing
polarizable models or by introducing fluctuating charge models.
A fluctuating charge model was recently used by Ricket al.10

to study bulk water and by Stuart and Berne7 to study Cl-

solvation in water clusters. It was shown that the fluctuation
charge model only slightly increases the computational cost
compared to simulations with pairwise potentials. The fluctua-
tion charge model is based on the electronegativity equalization
principle (eep), which states that the electronegativity of every
atom in the molecule is the same.11 One can consider eep to
be an empirical scheme. To apply this scheme one starts with
an expression for the energy of a molecule in terms of Taylor
series expansion in powers of net charges on atoms:

To simplify the equations for electronegativities, one stops
on the quadratic term of the expansion. In eq 1øi is the
electronegativity of atomi, defined as

andηij is the hardness matrixij element, defined as

The values of atomic electronegativities and hardness matrix
elements may be considered as free parameters to be determined
from the experimental information. This was done by Rick et
al. in their simulations of water.10 The eep together with the
charge conservation requirement results in a set of linear
equations for charges that can be solved on every step of
molecular dynamics, thus providing us with fluctuating charges
with values depending on environment.
The rigorous justification of the eep principle follows from

the density functional theory (DFT) of atoms and molecules.12

One can also derive eq 1, starting from basic postulates of the
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DFT. This approach was taken by Mortieret al.,13 Winkler
and Pantelidis,14 and by us.15 The derivation of eq 1 that we
reported previously illustrated that the coefficients in Taylor
expansion are not the electronegativities and hardnesses of
isolated atoms as sometimes is indicated. We showed that
values of atomic electronegativities in a molecule depend on
the atom partners and therefore are not fixed once and forever.
This point was also previously mentioned in the work of
Cioslowski and Mixon.16 In our recent work we obtained the
expression for the molecular energy as a functional of perturba-
tions on atomic densities. This expression contained only
atomic parameters which in principle can be calculated from
the atomic DFT problem. A generalized chemical potential
(electronegativity) equalization principle was proposed. The
use of density perturbations in the form of spherically symmetric
fixed charge distributions led to a quadratic model with respect
to net charges on the atoms. Calculations with all the parameters
evaluated from the first principles yielded a reasonable agree-
ment with the experiment. It was also suggested that the use
of a physically more accurate approximation to the perturbations
on atomic densities could lead to better results.
Below we will show how one can significantly improve the

description of molecules compared to our previous model while
still remaining in the framework of simple quadratic expression
for the energy with respect to atomic charges. We will develop
a new approximation which can be viewed as the next step in
the “multipole” expansion for the perturbations on atomic
densities. We will show that the application of this approxima-
tion to atoms in diatomic molecule can provide very good results
for charge transfer and can be used to explain the bonding in
homonuclear molecules.

II. Approximation

As we showed earlier,15 the energy of a molecule can be
expressed as a functional of the perturbations on the atomic
densities:

whereVnn represents the internuclear repulsion,Ea[Fa(rb)] is the
energy of unperturbed atoma, Va(rb) are the nuclear potentials,
Fa(rb) are the atomic densities andF′a(rb) are the perturbations on
the atomic densities. Also atomic chemical potentialµa and
atomic hardness kernelsηa(rb1, rb2) enter eq 4. They are
respectively the first and the second functional derivatives of
the energy at the point where the density is equal to the true
atomic densityFa(rb). Equation 4 can be a reasonable ap-
proximation when the perturbationsF′a(rb) are small compared
to unperturbed atomic densities.

The variablesF′a(rb) are constrained by the condition

which follows from the charge conservation considerations.
In this work we will concentrate at the studies of diatomic

molecules containing nucleiA andB (not restricted to cases
whenA * B). Each atom will be characterized by a set of
parameters that enter eq 4, with subscriptsa andb, respectively.
We begin with a simple approach when the density perturba-

tions are taken in the form

whererba andrbb are the position vectors of nucleiA andB. The
known positive functionsfa(rb) andfb(rb) are normalized to unity.
Substitution of eq 6 into eq 4 transfers the energy functional
into a function of the net chargesQa andQb:

whereE0 is the collection of terms independent of the charges.
The coefficients in eq 7 are defined as follows:

and

Finally,

whereRab ) |rba - rbb| is the distance between the nucleiA and
B.
The constraint (eq 5) will now read

As we can see, all the parameters defined by eqs 8-10 depend
on our choice of functionsf(rb) which in principle should not
remain the same for different molecules. It is interesting that
the first of the two terms in eq 8 is indeed a quantity describing
an isolated atom (absolute atomic chemical potential). The
second term in eq 8 accounts for the influence of the environ-
ment and, clearly, is not an atomic quantity. In some cases
this term may become very important for the understanding of
the correct physical picture, especially for the studies of
homonuclear molecules.
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Our calculations show that usually the first term in equation
8 contributes dominantly to the value ofµ*a. This leads us to
an interesting conclusion: the major part of the first order
correction to the energy in eq 4 is dependent on the amounts of
the transferred charges but not on the shapes of the perturbations
F′a(rb). Such an observation provides an explanation for a
considerable success of the electronegativity approach in
chemistry which tends to describe the processes of molecular
formation in terms of atomic characteristics.
The values of the net charges that minimize the energy (eq

7) under the condition (eq 11) are

It is easy to prove that only the difference betweenµ*b and
µ*a defines the direction of the charge transfer. The sufficient
conditions for the extremum to be a minimum yield

We then have

because (x + y)/2 > xxy for any positivex andy. Thus, we
proved that the denominator must always be positive and the
sign in eq 12 is defined by the numerator.
We performed calculations based in eq 12 using the squares

of Slater orbitals (the idea was first suggested in ref 17) for the
functions f(rb). For many cases reasonable results for the net
charges were obtained (see ref 15). Below we propose another
approximation for the density perturbationsF′a(rb) which allows
us to improve on the previously predicted results for charge
transfer in heteronuclear diatomic molecules and quantitatively
describe the bonding in homonuclear diatomics.
Consider now density perturbations to have the form

and

where fa(rb) and fb(rb) are again some known nonnegative
functions normalized to unity. Now there are two charge
distributions on each atom separated by the distances 2xa and
2xb, respectively. Symmetry considerations imply that both
vectorsxba andxbb are positioned along the internuclear axis.
With density perturbations described by eqs 15 and 16, the

energy in eq 4 becomes a quadratic function of four charges
qa,Qa, qb, andQb. We will make a change to more meaningful
variables by the following linear transformation:

VariablesSa andSb signify the total amount of charge that
has been transferred from one atom to the other, whileDa and
Db show how this charge is distributed within an atom. With
an additional assumption thatxa, xb , Rab we obtain for the
energy

where

andµ*a, µ*b, η̃a, η̃b, andJab are defined by formulas 8-10.
Constraint 5 will now read

III. Results

A. Heteronuclear Diatomics. Minimization of eq 18 under
the condition 22 with respect to four charge variables yields
the following result for the total charge transfer:

Thus, we obtain our previous result (formula 12) and a
correction to it (second term in the brackets). This result is
correct up to the second order with respect to small parameters
za and zb. From the analysis of the sufficient conditions we
can conclude that the denominator must have a positive sign
and again the direction of the charge transfer is defined by the
difference betweenµ*a andµ*b. Sufficient conditions imply that
∆η̃a > 0 and∆η̃b > 0 which means that the correction tends to
increase the values of the net charges obtained from eq 23
compared to the ones from eq 12.
Let us show that the use of formula 23 can indeed improve

the results of calculations for the net charges in diatomic
molecules. We use the squares of spherically symmetric Slater
orbitals for functionsfa(rb) and fb(rb):

where

Qa ) -Qb )
µ*b - µ*a
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(12)
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In eq 25,na andnb are the principal quantum numbers of the
valent orbitals of atomsA and B and An is a normalization
constant.
Parametersúa and úb are fixed by the conditions (for

discussion see refs 15 and 17):

whereRa andRb are the appropriate covalent radii of atomsA
andB. The values forµa andµb in eq 8 are taken as-(Ia,b+
Aa,b)/2, whereIa,b is an ionization potential andAa,b is an electron
affinity of atom A or B. The atomic densities entering the
second term in eq 8 were calculated through the atomic DFT
program. We use the Coulomb part of the hardness kernel to
calculate the values ofη̃a and η̃b.
The molecular dipole moment is now given as

Our estimations show that the last two terms are very small
compared to the first term in eq 27 and they can be safely
neglected. Thus, the molecular dipole moment is still defined
by the total charge transfer from one atom to the other.
In Table 1 we present the results of our calculations for

sixteen alkali-metal halide molecules. The values ofQexpwere
taken from ref 17 where they were calculated by dividing the
experimental dipole moments by the experimental bond distance.
Qcpe are the results obtained from formula 12, andScpe are the
new results calculated from formula 23 when∆η̃a and∆η̃b are
taken as free parameters to get the best fit to the experimental
data.
The values of∆η̃ for each element are given in Table 2. We

can see that all the values of∆η̃ are small compared to the
appropriateη̃, as expected. With such a choice the maximum
error is 22.2% and the average error is only 5.4%. This is much
better than reported in ref 14 and ref 17 for the similar set of
molecules. The error is due to the omission of the terms
proportional toza,b

2 in eq 23 and, of course, to initial ap-
proximations 15 and 16.
B. Homonuclear Diatomics. Another important feature of

approximations 15 and 16 is that now we can describe the
bonding in homonuclear diatomic molecules. In this caseµ*a
) µ*b, and thus from formula 23 it follows thatSa ) Sb ) 0, but
the energy expression (18) can be minimized with respect to
Da andDb. We then obtain

wherez ) za ) zb, ∆µ) ∆µa)∆µb, and∆η̃ ) ∆η̃a ) ∆η̃b.
For the energy we get

This means that even though there is no charge transfer in
the homogeneous diatomic molecule, there are physical dipoles
“sitting” on top of each atom. Their repulsion increases the
energy, but the interaction of these dipoles with the neighboring

atom decreases the energy more and, thus, is the basis for the
chemical bond in the molecule.
Taking the limitx f 0 in eq 28, we can find the values of

“mathematical dipoles” located on both atoms (we use the facts
that z ) x/Rab and∆η̃|xf0 ) 0)

Equation 30 can be used for calculations of such atomic
dipoles for homonuclear diatomic molecules and they are
represented in Table 3 asdcpe. Equations 20 and 10 were used
to find ∆µ andJab with the shape functionfa(rb) again defined
by eqs 24 and 25. Table 3 also shows the results for atomic
dipolesdscf and dmp2. These were obtained by placing point
dipoles at each atomic center and finding the values of such
dipoles through the fit of the electrostatic potential produced
by these dipoles to the calculated electrostatic potential due to
the charge distribution of the molecule. This was done for self-
consistent field and Moller-Plasset perturbation theory densities
using the ‘AtomDipole’ option of ‘Population’ keyword in
Gaussian-94 package.18 All the values are in Debyes.
It is interesting that without the help of any free parameters

we can get reasonable results for the values of the atomic dipoles
using a simple quadratic model given by eq 18.

IV. Conclusions

Let us now summarize the completed work. Formula 4 is
an approximation to the molecular energy in terms of perturba-

φa(r) ) Anr
na-1e-úar

φb(r) ) Anr
nb-1e-úbr (25)

úa )
2na + 1

2Ra
úb )

2nb + 1

2Rb
(26)

dab ) SaRab + Daxa + Dbxb (27)

Da ) Db ) - 2z∆µ
∆η̃ + 4z2Jab

(28)

E) E0 - 2z2∆µ2

∆η̃ + 4z2Jab
(29)

TABLE 1: Charges on Halides

Qexp Qcpe Scpe

LiF 0.837 0.731 0.824
LiCl 0.731 0.619 0.687
LiBr 0.694 0.549 0.610
LiI 0.647 0.441 0.503
NaF 0.879 0.697 0.761
NaCl 0.792 0.697 0.748
NaBr 0.757 0.684 0.734
NaI 0.708 0.634 0.700
KF 0.821 0.706 0.749
KCl 0.800 0.742 0.766
KBr 0.783 0.752 0.771
KI 0.740 0.734 0.770
RbF 0.781 0.728 0.776
RbCl 0.784 0.760 0.774
RbBr 0.768 0.766 0.763
RbI 0.753 0.749 0.760

TABLE 2: Values of η̃ (Coulomb Part) and ∆η̃ (in eV)

η̃ ∆η̃

Li 8.24 1.43
Na 6.13 0.84
K 4.95 0.19
Rb 4.63 0.01
F 18.20 1.34
Cl 12.86 0.33
Br 11.21 0.17
I 9.62 0.40

TABLE 3: Atomic Dipoles on Homonuclear Diatomic
Molecules (debyes)

dscf dmp2 dcpe

H2 0.28 0.27 0.33
N2 0.54 0.73 0.48
O2 0.21 0.27 0.36
F2 0.17 0.25 0.23
Cl2 0.54 0.56 0.27

d) Dx)
∆µRab
2Jab

(30)
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tions on the atomic densities. Depending on what molecular
properties we want to study, we can use different representations
of these density perturbations. In case of heteronuclear diatomic
molecules if we represent the density perturbation on each atom
in the form of spherically distributed charge centered on the
nucleus (eq 6), we obtain a familiar quadratic model for
molecular energy (see eq 7). The amount of charge transfer
that enters eq 7 can be determined from the minimization of
this expression under the constraint given by eq 11. The
sufficient conditions for the energy minimum (eq 13 and 14)
tell us that the direction of the charge transfer is given by the
sign of the difference of the chemical potentials. It is important
to realize that the chemical potential that enters eq 7 is not an
absolute chemical potential, but a modified chemical potential
that depends on the atomic partner in the diatomic molecule
(see eq 8).
When we assign a charge distribution to every atom in a

diatomic in the form described by eqs 15 and 16, we are able
to improve quite significantly the results for the total charge
transfer in heteronuclear diatomics (Table 1). Moreover, we
are also able to explain the bonding in homonuclear diatomic
molecules. This shows that our approach allows to treat
homonuclear diatomics in the same way as heteronuclear. In
the limit of a point dipole approximation to the charge
distribution on an atom in homonuclear diatomics (see eq 30),
we obtain results which are in a reasonable agreement with the
results from ab initio calculations.
Although in this work we deal with diatomic molecules, it is

clear that a spirit of this approach can be used to study
polyatomic molecules. This will be very useful for molecular
dynamics simulations, especially of large systems, due to the
low computational cost of solving linear equations that emerge
from the quadratic nature of the basic energy expression in the
model.

Acknowledgment. We are grateful to Dr. L. Bartolotti for
providing us with the program that performs calculations of

atomic densities and to Dr. A. Smondyrez for help in developing
the fitting procedure. We thank Prof. U. Dinur for very useful
conversations. Support of the National Science Foundation is
acknowledged.

References and Notes

(1) Allen M. P.; Tildesley, D.Computer Simulations of Liquids; Oxford
University Press: New York, 1987.

(2) Car R.; Parrinello M.Phys. ReV. Lett.1985, 55, 2471.
(3) Stone, A. J.The Theory of Intermolecular Forces; Oxford University

Press: New York, 1996.
(4) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.J. Phys. Chem.

1987, 91, 6269.
(5) Alejandre, J.; Tildesley, D. J.; Chapela, G.J. Chem. Phys.1995,

102, 4574.
(6) (a) Perera, L.; Berkowitz, M. L.J. Chem. Phys.1991, 95, 1954.

(b) Perera, L.; Berkowitz, M. L.J. Chem. Phys.1993, 99, 4236.
(7) Stuart, S. J.; Berne, B. J.J. Chem. Phys.1996, 100, 11934.
(8) Yeh, I. C.; Perera, L.; Berkowitz, M. L.Chem. Phys. Lett.1997,

264, 31.
(9) For recent example, see: Tobias, D. J.; Tu, K.; Klein, M. L.Curr.

Opin. Colloid Interface Sci.1997, 2, 15.
(10) Rick, S. W.; Stuart, S. J.; Berne, B. J.J. Chem. Phys.1994, 101,

6141.
(11) Sanderson, R. T.Science1951, 114, 670.
(12) (a) Parr, R. G.; Donnely, R. A.; Levy, M.; Palke, W. E.J. Chem.

Phys.1978, 69, 4431. (b) Parr, R. G.; Yang, W.Density Functional Theory
of Atoms and Molecules; Oxford University Press: New York, 1989.

(13) Mortier, W. J.; Ghosh, S. K.; Shankar, S.J. Am. Chem. Soc.1986,
108, 4315.

(14) Winkler, R.; Pantelidis, S. T. J.Chem. Phys.1997, 106, 7714.
(15) Itskowitz, P.; Berkowitz, M. L.J. Phys. Chem.1997, 101, 5687.
(16) Cioslowski, J.; Mixon, S. T.J. Am. Chem. Soc.1993, 115, 1084.
(17) Rappe, A. K.; Goddard, W. A.J. Phys. Chem.1991, 95, 3358.
(18) Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W.,

Johnson, B. G., Robb, M. A., Cheeseman, J. R., Keith, T., Petersson, G.
A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski,
V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B.,
Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen, W.,
Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin, R. L.,
Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-
Gordon, M., Gonzalez, C., Pople, J. A.,Gaussian 94, Revision E.2;
Gaussian, Inc.: Pittsburgh, PA, 1995.

4812 J. Phys. Chem. A, Vol. 102, No. 25, 1998 Itskowitz and Berkowitz


