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In our previous work ( Itskowitz, P.; Berkowitz, M. LJ. Phys. Chem. A997, 101, 5687), we showed how

in the framework of density functional theory the energy of a molecule can be expressed as a functional of
the perturbations on atomic densities. In this work we develop an approximation for these perturbations that
assigns two charge distributions to each atom. With the help of this approximation, we obtain the values of
the net charges for a number of heteronuclear diatomic molecules with the average error of only 5.4% compared
to the experimental data. Our approach also allows us to treat homonuclear diatomics in the same way as
heteronuclear. In the limit of a point dipole approximation to the charge distribution on an atom in homonuclear
diatomics we obtain results which are in a reasonable agreement with the resulabfinitio calculations.

I. Introduction effects into electrostatic part of the potential by introducing
polarizable models or by introducing fluctuating charge models.
A fluctuating charge model was recently used by Ritlal10

to study bulk water and by Stuart and Befrte study Cr
solvation in water clusters. It was shown that the fluctuation
charge model only slightly increases the computational cost
compared to simulations with pairwise potentials. The fluctua-
tion charge model is based on the electronegativity equalization
principle (eep), which states that the electronegativity of every
atom in the molecule is the sarke.One can consider eep to
be an empirical scheme. To apply this scheme one starts with

Molecular dynamics and Monte Carlo computer simulations
are tools that are used routinely to study the behavior of
molecules in clusters, simple fluids, complex fluids, and
molecular assembliés. Today, one can perform molecular
dynamics simulations by solving the quantum problem for every
step of the simulation, although it is computationally very
expensive to do thid. In fact, it is practically impossible to do
this for large systems such as an assembly of biomolecules. In
this case one has to resort to the traditional classical molecular

cbiynilmlcs method, v_vhere r_1|_1ot|on of thr? parthI(Ts IS d((ejscrlbhed an expression for the energy of a molecule in terms of Taylor

by Newton's equations. To move the particles under the oo expansion in powers of net charges on atoms:

influence of the forces one needs to describe these forces (i.e.,

to have a force field present in the simulations). A very _ 1

important part of the force field is the electrostatic part, and a E=EQ)+ ZX‘q‘ 7 Z UEERES (1)

lot of work is devoted to its interpretation, representation, and '

development. In its simplest form, the electrostatic force field To simplify the equations for electronegativities, one stops

is represented as the Coulomb interaction of some net chargeon the quadratic term of the expansion. In eq;lis the

monopoles, usually located at the positions of the atomic nuclei. electronegativity of atonn, defined as

The net charges are configuration independent and as the result

in this model the electrostatic energy is pairwise additive. This ’= §| 3 2)

kind of modeling can be very successful. For example, an ' ag 0

SPC/E model of water, where the electrostatic energy is

described in a pairwise fashion, is able to reproduce many bulk andzj is the hardness matrix element, defined as

properties of watet. Moreover, the model can reproduce some 5

of the interface properties of water, such as the temperature N = £| B (3)

dependence of the surface tensfoBut, as was shown recently, U dgog 0

simulations done on a water cluster with a simple anion such

as CI produced different results when popular pairwise additive ~ The values of atomic electronegativities and hardness matrix

potentials were used compared to simulations with nonadditive €lements may be considered as free parameters to be determined

potential$s® Comparison with experiments indicated that from the experimental information. This was done by Rick et

nonadditive potentials produce a description which is closer to @l- in their simulations of watéf The eep together with the

the correct description of the phenoméﬁa_ Charge conservation requirement results in a set of linear
The need to use nonadditive electrostatic potentials in €quations for charges that can be solved on every step of

simulations including simulations with biomolecules was often Molecular dynamics, thus providing us with fluctuating charges

expressed in the literatuPe One can introduce the many-body ~With values depending on environment.
The rigorous justification of the eep principle follows from

t Department of Physics and Astronomy. the density functional theory (DFT) of atoms and molecdfes.
* Department of Chemistry. One can also derive eq 1, starting from basic postulates of the
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DFT. This approach was taken by Mortiet al.3 Winkler The variables(f) are constrained by the condition
and Pantelidid? and by ust®> The derivation of eq 1 that we

reported previously illustrated that the coefficients in Taylor z f pL(F) df =0 (5)
expansion are not the electronegativities and hardnesses of 3

isolated atoms as sometimes is indicated. We showed that

values of atomic electronegativities in a molecule depend on which follows from the charge conservation considerations.
the atom partners and therefore are not fixed once and forever. In this work we will concentrate at the studies of diatomic
This point was also previously mentioned in the work of molecules containing nucléh and B (not restricted to cases
Cioslowski and Mixort® In our recent work we obtained the whenA = B). Each atom will be characterized by a set of
expression for the molecular energy as a functional of perturba- parameters that enter eq 4, with subscrégpésdb, respectively.
tions on atomic densities. This expression contained only We begin with a simple approach when the density perturba-
atomic parameters which in principle can be calculated from tions are taken in the form

the atomic DFT problem. A generalized chemical potential

(electronegativity) equalization principle was proposed. The Pa(T) = Qf(F = T)
use of density perturbations in the form of spherically symmetric L o
fixed charge distributions led to a quadratic model with respect Pp(T) = Qufp(F — Tp) (6)

to net charges on the atoms. Calculations with all the parameters N )
evaluated from the first principles yielded a reasonable agree-Wherera andr, are the position vectors of nucléiandB. The
ment with the experiment. It was also suggested that the useknown positive function&(r) andf,(F) are normalized to unity.
of a physically more accurate approximation to the perturbations Substitution of eq 6 into eq 4 transfers the energy functional
on atomic densities could lead to better results. into a function of the net chargeg, and Qp:
Below we will show how one can significantly improve the . . 1 e 2 1 e 2
description of molecules compared to our previous model while E(Qa:Qy) = Eo + 12Qa + 145Qp + 7277,.Qa + 7i1,Q5 +
still remaining in the framework of simple quadratic expression J6Q.Q, (7)
for the energy with respect to atomic charges. We will develop
a new approximation which can be viewed as the next step in whereEy is the collection of terms independent of the charges.
the “multipole” expansion for the perturbations on atomic The coefficients in eq 7 are defined as follows:
densities. We will show that the application of this approxima-

tion to atoms in diatomic molecule can provide very good results . Po(Fo— Ty |
for charge transfer and can be used to explain the bonding ina = #a T f (= Tp) + f I, —1, dr(fa(Ty —
homonuclear molecules. g
r)dr,
Il. Approximation — —
> * — - - pa(rZ - ra) — -

As we showed earlief the energy of a molecule can be #5=Hp T S |oaFr =T+ f—|r ey dr | f(Ty —
expressed as a functional of the perturbations on the atomic v —
densities: rpdry (8)

— B o and
E[o(T)] = E[py(T).0(T)...] = Von + D Edlpo(T)] +
a
o = (T, T (T )F(T,)dF, dT
Zqua(r)pb(r)dr—F a ffa 1" 2)7a l)a 2 1 2
b= ~ SUG — — — —
(?a) a(? ) Mo = ff’?b(rl’ Ff(TDf(F)dF, dF, )
1 Pkl )Pp\l2) R,
/Zzsz—drldr2+ Zluafpa(r)dr + Finally,
a b=a r12 a
ou(T2) ey L
zzf vy(T ) _|_f 7, (T AT, + Jan(Rap) fffa(rl ra)|—|:l_ ?2|fb(r2 Fp)dF, dr,
a bZza r12 (10)
1oy [ 1T 1 TPAF DT AT o, + — FamToli i ;
2 Na\T1s T2)Pal T 1)Pa\T 2)AT 1 AT 5 whereRyy, = [T3 — Tp| is the distance between the nuckeand
a
B.
Pa(T 1) pp(T2) The constraint (eq 5) will now read
Ly S [[————dr.df, (4)
a b=a P Q,+Q,=0 (11)
whereV,, represents the internuclear repulsigg,pa(r)] is the As we can see, all the parameters defined by egsBdepend

energy of unperturbed atom v,(F) are the nuclear potentials, on our choice of function§(r) which in principle should not
pa(F) are the atomic densities apt{r) are the perturbations on  remain the same for different molecules. It is interesting that
the atomic densities. Also atomic chemical potentigland the first of the two terms in eq 8 is indeed a quantity describing
atomic hardness kernelgy(ri, T2) enter eq 4. They are an isolated atom (absolute atomic chemical potential). The
respectively the first and the second functional derivatives of second term in eq 8 accounts for the influence of the environ-
the energy at the point where the density is equal to the true ment and, clearly, is not an atomic quantity. In some cases
atomic densityp,(f). Equation 4 can be a reasonable ap- this term may become very important for the understanding of
proximation when the perturbationg(r) are small compared  the correct physical picture, especially for the studies of
to unperturbed atomic densities. homonuclear molecules.
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Our calculations show that usually the first term in equation E(S,, S, D,, D,) = E, + x2S, + zAu,D, + uiS, +
8 contributes dominantly to the value @f. This leads us to Af
an interesting conclusion: the major part of the first order z,AupDy, + l/2(77a — —a)s,fi + 1,A%,D3 + 1/2(i]b -
correction to the energy in eq 4 is dependent on the amounts of 2

the transferred charges but not on the shapes of the perturbations% U aAm M 2
pL(F). Such an observation provides an explanation for a 2 S+ 1Dy’ + JpSiS, + ZJaDaS, + 296505 +

considerable success of the electronegativity approach in + 2] +2721.D.D. (18
chemistry which tends to describe the processes of molecular (Z+ )18, + 22235Ds (18)
formation in terms of atomic characteristics. where
The values of the net charges that minimize the energy (eq
7) under the condition (eq 11) are 7= Xa 2, = X (19)
e Rap Rab
b
Q=-Q - (12)

fla o = 2Jan (Ra Apg=pz — 1y = f ’Ub(?l — Tyt

It is easy to prove that only the difference betwegrand (T — Ty
u defines the direction of the charge transfer. The sufficient f — dr,[f (T, — Tdr,
conditions for the extremum to be a minimum yield Iry = ol

M,>0, #7,>0, #,,— Jib(Rab) >0 (13) Au, = u — pup = f ’Ua(?l —T)t

F,— T
We then have e e a|(r z rzla) F,|f(F1 — TP, (20)
1

7at i1y = 203(Rap) > 71t 71, = 24/7157, > 0 (14)
Afjy = i, — ffna(?l’ TR(T1 — X)(T, + X)dr  dF

becausex + y)/2 > +/xy for any positivex andy. Thus, we (22)
proved that the denominator must always be positive and the
sign in eq 12 is defined by the numerator. Aty =31y = [ [ (T2 T (T2 = KT, + X)dT, AT,

We performed calculations based in eq 12 using the squares L )
of Slater orbitals (the idea was first suggested in ref 17) for the @ndu3, i, 7a, 7, @ndJay are defined by formulas-810.
functionsf(r). For many cases reasonable results for the net ~ Constraint 5 will now read
charges were obtained (see ref 15). Below we propose another S+S5=0 (22)
approximation for the density perturbatiopigr) which allows
us to improve on the previously predicted results for charge | Results
transfer in heteronuclear diatomic molecules and quantitatively

descnbe the bond|ng |n homonuc'ear d|at0mlcs A. Heteronuclear DlatomICS M|n|m|zat|0n Of eq 18 undel’
Consider now density perturbations to have the form the condition 22 with respect to four charge variables yields
the following result for the total charge transfer:
PT) = Gafa(F — T2 = Xa) + Qfy(F — T+ X)) (15) Uy — uk / Aij, + A#,

o AT TS T - 2\ 26+ 7 — 20

AU(F) = QT — o+ %) + QT — T — %) (16) Oz (23)

Thus, we obtain our previous result (formula 12) and a
correction to it (second term in the brackets). This result is
correct up to the second order with respect to small parameters
Z, andz,. From the analysis of the sufficient conditions we
can conclude that the denominator must have a positive sign
and again the direction of the charge transfer is defined by the
difference betweep? andu}. Sufficient conditions imply that
A#a > 0 andA7, > 0 which means that the correction tends to
increase the values of the net charges obtained from eq 23
compared to the ones from eq 12.

where f,(f) and f,(f) are again some known nonnegative
functions normalized to unity. Now there are two charge
distributions on each atom separated by the distankgari
2xp, respectively. Symmetry considerations imply that both
vectorsx, andX, are positioned along the internuclear axis.
With density perturbations described by eqs 15 and 16, the
energy in eq 4 becomes a quadratic function of four charges
Oa, Qas Op, andQp. We will make a change to more meaningful
variables by the following linear transformation:

— _ Let us show that the use of formula 23 can indeed improve
Gt Q=% &bt Q=S the results of calculations for the net charges in diatomic
0 = 0 = molecules. We use the squares of spherically symmetric Slater
G~ Qa=Da G~ Qo =Dy (17 orbitals for functionsf4(F) and fu(F):
VariablesS, and S, signify the total amount of charge that f(T) = ¢2(—r>)
has been transferred from one atom to the other, wiiland @ @
Dy, show how this charge is distributed within an atom. With — —
" o fi(F) = 45(F) (24)

an additional assumption thaj, x, < Ry, we obtain for the
energy where
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ba(r) = A leE TABLE 1: Charges on Halides
Qexp QCPE Sepe
Pp(r) = Ar™ e (25) LiF 0.837 0.731 0.824
L@CI 0.731 0.619 0.687
In eq 25,n, andny, are the principal quantum numbers of the 'E!Ff 8-22;1 8-32? 8-%;’
. . . . | . . .
valent orbitals of atom#\ and B and A, is a normalization NaF 0.879 0.697 0761
constant. , - NaCl 0.792 0.697 0.748
Parameterst, and ¢, are fixed by the conditions (for NaBr 0.757 0.684 0.734
discussion see refs 15 and 17): Nal 0.708 0.634 0.700
KF 0.821 0.706 0.749
2I‘1a +1 2nb +1 KCI 0.800 0.742 0.766
= b= (26) KBr 0.783 0.752 0.771
R, 2R, K 0.740 0.734 0.770
RbF 0.781 0.728 0.776
whereR, andR, are the appropriate covalent radii of atos RbCI 0.784 0.760 0.774
RbBr 0.768 0.766 0.763

andB. The values fou, anduy in eq 8 are taken as(lapt
Aap)/2, wherel,p is an ionization potential andl,p is an electron

affinity of atom A or B. The atomic densities entering the TABLE 2: Values of 4 (Coulomb Part) and Adj (in eV)
second term in eq 8 were calculated through the atomic DFT -

Rbl 0.753 0.749 0.760

program. We use the Coulomb part of the hardness kernel to i Al
calculate the values df, and fjp. klia 86-21% 10-‘5‘3?:1
The molecular dipole moment is now given as K 495 019
dap = SRyp T DX, + DXy (27) Eb 1328 (1)2411
Cl 12.86 0.33
Our estimations show that the last two terms are very small Br 11.21 0.17
compared to the first term in eq 27 and they can be safely I 9.62 0.40
neglected. Thus, the molecular dipole moment is still defined . _— . .
by the total charge transfer from one atom to the other. ;\r/l%?el‘cag's (Adtgtr)mc Dipoles on Homonuclear Diatomic
- yes)
In Table 1 we present the results of our calculations for
sixteen alkali-metal halide molecules. The valueQ®&¥ were o dmez deee
taken from ref 17 where they were calculated by dividing the Ho 0.28 0.27 0.33
experimental dipole moments by the experimental bond distance. N2 0.54 0.73 0.48
Qcre are the results obtained from formula 12, &iéf are the l(:); 8'% 82; g'gg
new results calculated from formula 23 whaij, andAij, are Cl, 0.54 0.56 0.27
taken as free parameters to get the best fit to the experimental
data. atom decreases the energy more and, thus, is the basis for the
The values ofA#; for each element are given in Table 2. We chemical bond in the molecule.
can see that all the values afi are small compared to the Taking the limitx — 0 in eq 28, we can find the values of

appropriate, as expected. With such a choice the maximum “mathematical dipoles” located on both atoms (we use the facts
error is 22.2% and the average error is only 5.4%. This is much thatz = xRy, and Aj|x—o = 0)
better than reported in ref 14 and ref 17 for the similar set of

molecules. The error is due to the omission of the terms o AuRy,
proportional toé’b in eq 23 and, of course, to initial ap- d=Dx= 23, (30)
proximations 15 and 16.

B. Homonuclear Diatomics. Another important feature of Equation 30 can be used for calculations of such atomic

approximations 15 and 16 is that now we can describe the dipoles for homonuclear diatomic molecules and they are
bonding in homonuclear diatomic molecules. In this caSe  represented in Table 3 @& Equations 20 and 10 were used
= uy, and thus from formula 23 it follows th&, = S = 0, but to find Au andJap with the shape functiofy(f) again defined

the energy expression (18) can be minimized with respect to by eqs 24 and 25. Table 3 also shows the results for atomic

Da andDy. We then obtain dipolesds°f and d™P2  These were obtained by placing point
dipoles at each atomic center and finding the values of such
D,=D,=— _2ZAu (28) dipoles through the fit of the electrostatic potential produced
A7+ 422Jab by these dipoles to the calculated electrostatic potential due to
the charge distribution of the molecule. This was done for self-
wherez = z, = z,, Au= Aus=Aun, andAn = Afja = Aijp. consistent field and Moller-Plasset perturbation theory densities
For the energy we get using the ‘AtomDipole’ option of ‘Population’ keyword in
Gaussian-94 package. All the values are in Debyes.
E=E,- 222A592 (29) W;tciasninteresting that without the help of any free parameters
get reasonable results for the values of the atomic dipoles

A¥j + 423 _ ; _ .
" ab using a simple quadratic model given by eq 18.
This means that even though there is no charge transfer in

the homogeneous diatomic molecule, there are physical dipoles

“sitting” on top of each atom. Their repulsion increases the  Let us now summarize the completed work. Formula 4 is

energy, but the interaction of these dipoles with the neighboring an approximation to the molecular energy in terms of perturba-

IV. Conclusions
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